Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Sci Rep ; 14(1): 3639, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351065

RESUMO

The prevalence of HIV-1 infection continues to pose a significant global public health issue, highlighting the need for antiretroviral drugs that target viral proteins to reduce viral replication. One such target is HIV-1 protease (PR), responsible for cleaving viral polyproteins, leading to the maturation of viral proteins. While darunavir (DRV) is a potent HIV-1 PR inhibitor, drug resistance can arise due to mutations in HIV-1 PR. To address this issue, we developed a novel approach using the fragment molecular orbital (FMO) method and structure-based drug design to create DRV analogs. Using combinatorial programming, we generated novel analogs freely accessible via an on-the-cloud mode implemented in Google Colab, Combined Analog generator Tool (CAT). The designed analogs underwent cascade screening through molecular docking with HIV-1 PR wild-type and major mutations at the active site. Molecular dynamics (MD) simulations confirmed the assess ligand binding and susceptibility of screened designed analogs. Our findings indicate that the three designed analogs guided by FMO, 19-0-14-3, 19-8-10-0, and 19-8-14-3, are superior to DRV and have the potential to serve as efficient PR inhibitors. These findings demonstrate the effectiveness of our approach and its potential to be used in further studies for developing new antiretroviral drugs.


Assuntos
Infecções por HIV , Inibidores da Protease de HIV , HIV-1 , Humanos , Darunavir/farmacologia , Inibidores da Protease de HIV/farmacologia , Inibidores da Protease de HIV/química , HIV-1/genética , Simulação de Acoplamento Molecular , Sulfonamidas/farmacologia , Proteínas Virais/genética , Protease de HIV/metabolismo , Mutação , Farmacorresistência Viral/genética
2.
J Comput Chem ; 45(13): 953-968, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38174739

RESUMO

In the pursuit of novel antiretroviral therapies for human immunodeficiency virus type-1 (HIV-1) proteases (PRs), recent improvements in drug discovery have embraced machine learning (ML) techniques to guide the design process. This study employs ensemble learning models to identify crucial substructures as significant features for drug development. Using molecular docking techniques, a collection of 160 darunavir (DRV) analogs was designed based on these key substructures and subsequently screened using molecular docking techniques. Chemical structures with high fitness scores were selected, combined, and one-dimensional (1D) screening based on beyond Lipinski's rule of five (bRo5) and ADME (absorption, distribution, metabolism, and excretion) prediction implemented in the Combined Analog generator Tool (CAT) program. A total of 473 screened analogs were subjected to docking analysis through convolutional neural networks scoring function against both the wild-type (WT) and 12 major mutated PRs. DRV analogs with negative changes in binding free energy ( ΔΔ G bind ) compared to DRV could be categorized into four attractive groups based on their interactions with the majority of vital PRs. The analysis of interaction profiles revealed that potent designed analogs, targeting both WT and mutant PRs, exhibited interactions with common key amino acid residues. This observation further confirms that the ML model-guided approach effectively identified the substructures that play a crucial role in potent analogs. It is expected to function as a powerful computational tool, offering valuable guidance in the identification of chemical substructures for synthesis and subsequent experimental testing.


Assuntos
Infecções por HIV , Inibidores da Protease de HIV , HIV-1 , Humanos , Darunavir/farmacologia , Inibidores da Protease de HIV/farmacologia , Inibidores da Protease de HIV/química , Peptídeo Hidrolases/farmacologia , Simulação de Acoplamento Molecular , Protease de HIV/química , Descoberta de Drogas
3.
J Biomol Struct Dyn ; : 1-14, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38260962

RESUMO

Piperine (PP), a natural alkaloid found in black pepper, possesses significant bioactivities. However, its use in pharmaceutical applications is hindered by low water solubility and susceptibility to UV light degradation. To overcome these challenges, we investigated the potential of ß-cyclodextrin (ßCD) and its derivatives with dimethyl (DMßCD), hydroxy-propyl (HPßCD) and sulfobutyl-ether (SBEßCD) substitutions to enhance the solubility and stability of PP. This study employed computational and experimental approaches to examine the complexation between PP and ßCDs. The results revealed the formation of two types of inclusion complexes: the P-form and M-form involving the insertion of piperidine moiety and the methylene-di-oxy-phenyl moiety, respectively. These complexes primarily rely on van der Waals interactions. Among the three derivatives, the PP/SBEßCD complex exhibited the highest stability followed by HPßCD, as attributed to maximum atom contacts and minimal solvent accessibility. Solubility studies confirmed the formation of inclusion complexes in a 1:1 ratio. Notably, the stability constant of the inclusion complex was approximately two-fold higher with SBEßCD and HPßCD compared to ßCD. The DSC thermograms provided confirmation of the formation of the inclusion complex between the host and guest. These findings highlight the potential of ßCD derivatives to effectively encapsulate PP, improving its solubility and presenting new opportunities for its pharmaceutical applications.Communicated by Ramaswamy H. Sarma.

4.
J Mol Graph Model ; 125: 108597, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37625172

RESUMO

Four well-suited porous materials for the selective adsorption of the most prominent CFC, which is CCl2F2, from the air are carbon nanotubes CNT (9,9) and CNT (11,11), NaY zeolite, and the Metal Organic Framework MIL-125(Fe). The adsorption has been investigated through molecular simulations. Simulation results and theoretical considerations show that reasons for the extraordinarily high selectivity in all four cases were found to be the differences in the enthalpy of adsorption for the various adsorbed gases rather than steric reasons. The four adsorbate-adsorbent systems have been examined at different temperatures, pressures, and concentration ratios in the mixture. Among them, the carbon nanotube CNT (11,11) exhibited the highest selectivity, reaching up to 104.


Assuntos
Nanotubos de Carbono , Zeolitas , Simulação por Computador , Gases , Termodinâmica , Adsorção
5.
Sci Rep ; 13(1): 10652, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391452

RESUMO

The Thai banded tiger wasp (Vespa affinis) is a dangerous vespid species found in Southeast Asia, and its stings often result in fatalities due to the presence of lethal phospholipase A[Formula: see text], known as Vespapase or Ves a 1. Developing anti-venoms for Ves a 1 using chemical drugs, such as chemical drug guide, remains a challenging task. In this study, we screened 2056 drugs against the opening conformation of the venom using the ZINC 15 and e-Drug 3D databases. The binding free energy of the top five drug candidates complexed with Ves a 1 was calculated using 300-ns-MD trajectories. Our results revealed that voxilaprevir had a higher binding free energy at the catalytic sites than other drug candidates. Furthermore, the MD simulation results indicated that voxilaprevir formed stable conformations within the catalytic pocket. Consequently, voxilaprevir could act as a potent inhibitor, opening up avenues for the development of more effective anti-venom therapeutics for Ves a 1.


Assuntos
Fosfolipases , Vespas , Animais , Venenos de Vespas , Antivenenos , Lipídeos
6.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36901859

RESUMO

α-tocopherol is the physiologically most active form of vitamin E, with numerous biological activities, such as significant antioxidant activity, anticancer capabilities, and anti-aging properties. However, its low water solubility has limited its potential use in the food, cosmetic, and pharmaceutical industries. One possible strategy for addressing this issue is the use of a supramolecular complex with large-ring cyclodextrins (LR-CDs). In this study, the phase solubility of the CD26/α-tocopherol complex was investigated to assess the possible ratios between host and guest in the solution phase. Next, the host-guest association of the CD26/α-tocopherol complex at different ratios of 1:2, 1:4, 1:6, 2:1, 4:1, and 6:1 was studied by all-atom molecular dynamics (MD) simulations. At 1:2 ratio, two α-tocopherol units interact spontaneously with CD26, forming an inclusion complex, as supported by the experimental data. In the 2:1 ratio, a single α-tocopherol unit was encapsulated by two CD26 molecules. In comparison, increasing the number of α-tocopherol or CD26 molecules above two led to self-aggregation and consequently limited the solubility of α-tocopherol. The computational and experimental results indicate that a 1:2 ratio could be the most suitable stoichiometry to use in the CD26/α-tocopherol complex to improve α-tocopherol solubility and stability in inclusion complex formation.


Assuntos
Ciclodextrinas , alfa-Tocoferol , Dipeptidil Peptidase 4 , Antioxidantes , Solubilidade
7.
J Mol Graph Model ; 117: 108293, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35988438

RESUMO

Porous solids with channel sizes that are not much above the size of small hydrocarbons can yield extremely large adsorption selectivity. Our Grand Canonical Monte-Carlo simulations indicate exceptionally high selectivity for the separation of methane, ethane and propane from natural gas. At 250 K the C3H8/CH4 separation on MIL-127 at low pressure has a selectivity of more than 1000 and the C3H8/CH4 separation on CNT (9,9) is even above 2000. This is due to the strong molecule lattice interaction in narrow channels which leads to large enthalpies of adsorption. The Arrhenius law for the Henry coefficients is analysed in order to show that the effect is due to this enthalpy rather than to steric reasons.


Assuntos
Nanotubos de Carbono , Adsorção , Dióxido de Carbono , Etano , Hidrocarbonetos , Metano , Gás Natural , Propano
8.
PLoS One ; 17(6): e0269563, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35771802

RESUMO

SARS-CoV-2 causes the current global pandemic coronavirus disease 2019. Widely-available effective drugs could be a critical factor in halting the pandemic. The main protease (3CLpro) plays a vital role in viral replication; therefore, it is of great interest to find inhibitors for this enzyme. We applied the combination of virtual screening based on molecular docking derived from the crystal structure of the peptidomimetic inhibitors (N3, 13b, and 11a), and experimental verification revealed FDA-approved drugs that could inhibit the 3CLpro of SARS-CoV-2. Three drugs were selected using the binding energy criteria and subsequently performed the 3CLpro inhibition by enzyme-based assay. In addition, six common drugs were also chosen to study the 3CLpro inhibition. Among these compounds, lapatinib showed high efficiency of 3CLpro inhibition (IC50 value of 35 ± 1 µM and Ki of 23 ± 1 µM). The binding behavior of lapatinib against 3CLpro was elucidated by molecular dynamics simulations. This drug could well bind with 3CLpro residues in the five subsites S1', S1, S2, S3, and S4. Moreover, lapatinib's key chemical pharmacophore features toward SAR-CoV-2 3CLpro shared important HBD and HBA with potent peptidomimetic inhibitors. The rational design of lapatinib was subsequently carried out using the obtained results. Our discovery provides an effective repurposed drug and its newly designed analogs to inhibit SARS-CoV-2 3CLpro.


Assuntos
Tratamento Farmacológico da COVID-19 , Peptidomiméticos , Antivirais/química , Antivirais/farmacologia , Proteases 3C de Coronavírus , Cisteína Endopeptidases/metabolismo , Reposicionamento de Medicamentos , Humanos , Lapatinib/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptidomiméticos/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , SARS-CoV-2
9.
Molecules ; 27(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35566194

RESUMO

Piper nigrum, or black pepper, produces piperine, an alkaloid that has diverse pharmacological activities. In this study, N-aryl amide piperine analogs were prepared by semi-synthesis involving the saponification of piperine (1) to yield piperic acid (2) followed by esterification to obtain compounds 3, 4, and 5. The compounds were examined for their antitrypanosomal, antimalarial, and anti-SARS-CoV-2 main protease activities. The new 2,5-dimethoxy-substituted phenyl piperamide 5 exhibited the most robust biological activities with no cytotoxicity against mammalian cell lines, Vero and Vero E6, as compared to the other compounds in this series. Its half-maximal inhibitory concentration (IC50) for antitrypanosomal activity against Trypanosoma brucei rhodesiense was 15.46 ± 3.09 µM, and its antimalarial activity against the 3D7 strain of Plasmodium falciparum was 24.55 ± 1.91 µM, which were fourfold and fivefold more potent, respectively, than the activities of piperine. Interestingly, compound 5 inhibited the activity of 3C-like main protease (3CLPro) toward anti-SARS-CoV-2 activity at the IC50 of 106.9 ± 1.2 µM, which was threefold more potent than the activity of rutin. Docking and molecular dynamic simulation indicated that the potential binding of 5 in the 3CLpro active site had the improved binding interaction and stability. Therefore, new aryl amide analogs of piperine 5 should be investigated further as a promising anti-infective agent against human African trypanosomiasis, malaria, and COVID-19.


Assuntos
Alcaloides , Antimaláricos , COVID-19 , Piper nigrum , Alcaloides/química , Alcaloides/farmacologia , Animais , Antimaláricos/farmacologia , Benzodioxóis , Humanos , Mamíferos , Simulação de Acoplamento Molecular , Piper nigrum/química , Piperidinas , Alcamidas Poli-Insaturadas/química , Alcamidas Poli-Insaturadas/farmacologia
10.
J Immunol Res ; 2022: 5072154, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310606

RESUMO

Objectives: This study is aimed at determining the role of T cells by assessing the numbers of IFN-γ- and IL-2-secreting T cells following stimulation with peptides derived from DNA topoisomerase-I protein in Thai SSc patients. Methods: Fifty Thai SSc patients and 50 healthy controls (HC) joined this study. IFN-γ and IL-2 levels upon stimulation of T cells with 6 peptides derived from DNA topoisomerase-I protein were determined. Anti-nuclear antibodies (ANA) and anti-Scl-70 antibodies were determined by using the ELISA method. Results: In SSc patients, we detected a significantly higher number of IFN-γ- and IL-2-secreting CD8+ T cells than IFN-γ- and IL-2-secreting CD4+ T cells after stimulation with pooled peptides derived from DNA topoisomerase-I protein. A similar percentage of CD4+IL-2+, CD4+IFN-γ +, and CD8+IL-2+ were detected following stimulation with DNA topoisomerase-I protein -in SSc patients with anti-Scl-70 antibody (SSc/anti-Scl-70+) and those without. In contrast, the amount of CD8+IFN-γ + cells was significantly higher in SSc/anti-Scl-70+ than those without. Stimulation with individual peptides showed that CSLRVEHINLHPELD (sPep3; 15 amino acids; position 505-519 of DNA topoisomerase-I protein) was the optimal epitope that induced T cells secreting the highest levels of IFN-γ and IL-2. A higher percentage of IFN-γ +CD4+ T cells was detected in SSc/anti-Scl-70+ than those without the following stimulation with peptides 2 (amino acid position 475-486 [RAVALYFIDKLA] of protein DNA topoisomerase). Conclusion: The results from this study emphasize the critical role of DNA topoisomerase-I peptides on the activation of T cells in SSc patients. The findings provide a better understanding of SSc's immunopathogenesis and may lead to the development of diagnostic tools and specific treatments for SSc in the future.


Assuntos
Linfócitos T CD8-Positivos , Escleroderma Sistêmico , Anticorpos Antinucleares , Humanos , Interferon gama/metabolismo , Tailândia
11.
J Chem Inf Model ; 62(6): 1498-1509, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35245424

RESUMO

The coronavirus disease pandemic is a constant reminder that global citizens are in imminent danger of exposure to emerging infectious diseases. Therefore, developing a technique for inhibitor discovery is essential for effective drug design. Herein, we proposed fragment molecular orbital (FMO)-based virtual screening to predict the molecular binding energy of potential severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease inhibitors. The integration of quantum mechanical approaches and trajectory analysis from a microsecond molecular dynamics simulation was used to identify potential inhibitors. We identified brominated baicalein as a potent inhibitor of the SARS-CoV-2 main protease and confirmed its inhibitory activity in an in vitro assay. Brominated baicalein did not demonstrate significant toxicity in either in vitro or in vivo studies. The pair interaction energy from FMO-RIMP2/PCM and inhibitory constants based on the protease enzyme assay suggested that the brominated baicalein could be further developed into novel SARS-CoV-2 protease inhibitors.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Antivirais/química , Proteases 3C de Coronavírus , Flavanonas , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , SARS-CoV-2
12.
J Phys Chem B ; 125(50): 13644-13656, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34904832

RESUMO

Global public health has been a critical problem by the sudden increase of the COVID-19 outbreak. The papain-like protease (PLpro) of SARS-CoV-2 is a key promising target for antiviral drug development since it plays a pivotal role in viral replication and innate immunity. Here, we employed the all-atom molecular dynamics (MD) simulations and binding free energy calculations based on MM-PB(GB)SA and SIE methods to elucidate and compare the binding behaviors of five inhibitors derived from peptidomimetic inhibitors (VIR250 and VIR251) and naphthalene-based inhibitors (GRL-0617, compound 3, and compound Y96) against SARS-CoV-2 PLpro. The obtained results revealed that all inhibitors interacting within the PLpro active site are mostly driven by vdW interactions, and the hydrogen bond formation in residues G163 and G271 with peptidomimetics and the Q269 residue with naphthalene-based inhibitors was essential for stabilizing the protein-ligand complexes. Among the five studied inhibitors, VIR250 exhibited the most binding efficiency with SARS-CoV-2 PLpro, and thus, it was chosen for the rational drug design. Based on the computationally designed ligand-protein complexes, the replacement of aromatic rings including heteroatoms (e.g., thiazolopyridine) at the P2 and P4 sites could help to improve the inhibitor-binding efficiency. Furthermore, the hydrophobic interactions with residues at P1-P3 sites can be increased by enlarging the nonpolar moieties (e.g., ethene) at the N-terminal of VIR250. We expect that the structural data obtained will contribute to the development of new PLpro inhibitors with more inhibitory potency for COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Compostos de Anilina , Benzamidas , Proteases Semelhantes à Papaína de Coronavírus , Desenho de Fármacos , Humanos , Naftalenos , Papaína
13.
ACS Omega ; 6(27): 17342-17352, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34278120

RESUMO

The paper shows, by molecular simulations, that a CNT (9,9) carbon nanotube allows very efficient separation of nitrogen oxides (NO x ) from N2, that has in good approximation properties of the complete air mixture. Gibbs ensemble Monte Carlo simulations are used to describe the adsorption. The permanent chemical reaction between N2O4 and NO2, which occurs simultaneously to adsorption, is treated by the reactive Monte Carlo simulation. A very high selectivity has been found. For a low pressure and at T = 298 K, an adsorption/reaction selectivity between NO x and N2 can reach values up to 3 × 103.

14.
J Mol Liq ; 322: 114999, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33518853

RESUMO

The emergence outbreak caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has received significant attention on the global risks. Due to itscrucial role in viral replication, the main protease 3CLpro is an important target for drug discovery and development to combat COVID-19. In this work, the structural and dynamic behaviors as well as binding efficiency of the four peptidomimetic inhibitors (N3, 11a, 13b, and 14b) recently co-crystalized with SARS-CoV-2 3CLpro were studied and compared using all-atom molecular dynamics (MD) simulations and solvated interaction energy-based binding free energy calculations. The per-residue decomposition free energy results suggested that the key residues involved in inhibitors binding were H41, M49, L141-C145, H163-E166, P168, and Q189-T190 in the domains I and II. The van der Waals interaction yielded the main energy contribution stabilizing all the focused inhibitors. Besides, their hydrogen bond formations with F140, G143, C145, H164, E166, and Q189 residues in the substrate-binding pocket were also essential for strengthening the molecular complexation. The predicted binding affinity of the four peptidomimetic inhibitors agreed with the reported experimental data, and the 13b showed the most efficient binding to SARS-CoV-2 3CLpro. From rational drug design strategies based on 13b, the polar moieties (e.g., benzamide) and the bulky N-terminal protecting groups (e.g., thiazole) should be introduced to P1' and P4 sites in order to enhance H-bonds and hydrophobic interactions, respectively. We hope that the obtained structural and energetic information could be beneficial for developing novel SARS-CoV-2 3CLpro inhibitors with higher inhibitory potency to combat COVID-19.

15.
Molecules ; 26(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562757

RESUMO

The effect of microsolvation on excited-state proton transfer (ESPT) reaction of 3-hydroxyflavone (3HF) and its inclusion complex with γ-cyclodextrin (γ-CD) was studied using computational approaches. From molecular dynamics simulations, two possible inclusion complexes formed by the chromone ring (C-ring, Form I) and the phenyl ring (P-ring, Form II) of 3HF insertion to γ-CD were observed. Form II is likely more stable because of lower fluctuation of 3HF inside the hydrophobic cavity and lower water accessibility to the encapsulated 3HF. Next, the conformation analysis of these models in the ground (S0) and the first excited (S1) states was carried out by density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations, respectively, to reveal the photophysical properties of 3HF influenced by the γ-CD. The results show that the intermolecular hydrogen bonding (interHB) between 3HF and γ-CD, and intramolecular hydrogen bonding (intraHB) within 3HF are strengthened in the S1 state confirmed by the shorter interHB and intraHB distances and the red-shift of O-H vibrational modes involving in the ESPT process. The simulated absorption and emission spectra are in good agreement with the experimental data. Significantly, in the S1 state, the keto form of 3HF is stabilized by γ-CD, explaining the increased quantum yield of keto emission of 3HF when complexing with γ-CD in the experiment. In the other word, ESPT of 3HF is more favorable in the γ-CD hydrophobic cavity than in aqueous solution.


Assuntos
Flavonoides/química , Prótons , Solventes/química , Água/química , gama-Ciclodextrinas/química , Modelos Moleculares , Conformação Molecular
16.
Molecules ; 25(11)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32485931

RESUMO

α-Mangostin (MGS) exhibits various pharmacological activities, including antioxidant, anticancer, antibacterial, and anti-inflammatory properties. However, its low water solubility is the major obstacle for its use in pharmaceutical applications. To increase the water solubility of MGS, complex formation with beta-cyclodextrins (ßCDs), particularly with the native ßCD and/or its derivative 2,6-dimethyl-ß-CD (DMßCD) is a promising technique. Although there have been several reports on the adsorption of ßCDs on the lipid bilayer, the release of the MGS/ßCDs inclusion complex through the biological membrane remains unclear. In this present study, the release the MGS from the two different ßCDs (ßCD and DMßCD) across the lipid bilayer was investigated. Firstly, the adsorption of the free MGS, free ßCDs, and inclusion complex formation was studied by conventional molecular dynamics simulation. The MGS in complex with those two ßCDs was able to spontaneously release free MGS into the inner membrane. However, both MGS and DMßCD molecules potentially permeated into the deeper region of the interior membrane, whereas ßCD only adsorbed at the outer membrane surface. The interaction between secondary rim of ßCD and the 1-palmitoeyl-2-oleoyl-glycero-3-phosphocholine (POPC) phosphate groups showed the highest number of hydrogen bonds (up to 14) corresponding to the favorable location of ßCD on the POPC membrane. Additionally, the findings suggested that electrostatic energy was the main driving force for ßCD adsorption on the POPC membrane, while van der Waals interactions played a predominant role in DMßCD adsorption. The release profile of MGS from the ßCDs pocket across the lipid bilayer exhibited two energy minima along the reaction coordinate associated with the permeation of the MGS molecule into the deeper region of the POPC membrane.


Assuntos
Desenho de Fármacos , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Xantonas/administração & dosagem , Xantonas/química , beta-Ciclodextrinas/análise , Adsorção , Portadores de Fármacos , Ligação de Hidrogênio , Lipídeos/química , Permeabilidade , Fosfatidilcolinas/química , Solubilidade , Eletricidade Estática
17.
ACS Omega ; 5(22): 13023-13033, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32548487

RESUMO

A high selectivity of NO x over N2 (simulating air) is found in silico when studying the adsorption of the ternary mixture N2O4/NO2/N2 on the metal-organic framework MIL-127(Fe) by molecular simulations under consideration of the recombination reaction N2O4 ↔ 2NO2. The number of N atoms in nitrogen oxides NO x and that in N2 is used to define a selectivity of the combined adsorption and chemical recombination that can reach values of about 1000.

18.
Biomolecules ; 10(6)2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32549280

RESUMO

ß-Glucosidases and ß-mannosidases hydrolyze substrates that differ only in the epimer of the nonreducing terminal sugar moiety, but most such enzymes show a strong preference for one activity or the other. Rice Os3BGlu7 and Os7BGlu26 ß-glycosidases show a less strong preference, but Os3BGlu7 and Os7BGlu26 prefer glucosides and mannosides, respectively. Previous studies of crystal structures with glucoimidazole (GIm) and mannoimidazole (MIm) complexes and metadynamic simulations suggested that Os7BGlu26 hydrolyzes mannosides via the B2,5 transition state (TS) conformation preferred for mannosides and glucosides via their preferred 4H3/4E TS conformation. However, MIm is weakly bound by both enzymes. In the present study, we found that MIm was not bound in the active site of crystallized Os3BGlu7, but GIm was tightly bound in the -1 subsite in a 4H3/4E conformation via hydrogen bonds with the surrounding residues. One-microsecond molecular dynamics simulations showed that GIm was stably bound in the Os3BGlu7 active site and the glycone-binding site with little distortion. In contrast, MIm initialized in the B2,5 conformation rapidly relaxed to a E3/4H3 conformation and moved out into a position in the entrance of the active site, where it bound more stably despite making fewer interactions. The lack of MIm binding in the glycone site in protein crystals and simulations implies that the energy required to distort MIm to the B2,5 conformation for optimal active site residue interactions is sufficient to offset the energy of those interactions in Os3BGlu7. This balance between distortion and binding energy may also provide a rationale for glucosidase versus mannosidase specificity in plant ß-glycosidases.


Assuntos
Glicosídeos , Imidazóis , Oryza/enzimologia , beta-Glucosidase/química , beta-Glucosidase/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Glucose/química , Glicosídeos/química , Glicosídeos/metabolismo , Hidrólise , Imidazóis/química , Imidazóis/metabolismo , Manose/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Oryza/metabolismo , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
19.
Biochemistry ; 59(18): 1769-1779, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32293875

RESUMO

Since the emergence of a novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported from Wuhan, China, neither a specific vaccine nor an antiviral drug against SARS-CoV-2 has become available. However, a combination of two HIV-1 protease inhibitors, lopinavir and ritonavir, has been found to be effective against SARS-CoV, and both drugs could bind well to the SARS-CoV 3C-like protease (SARS-CoV 3CLpro). In this work, molecular complexation between each inhibitor and SARS-CoV-2 3CLpro was studied using all-atom molecular dynamics simulations, free energy calculations, and pair interaction energy analyses based on MM/PB(GB)SA and FMO-MP2/PCM/6-31G* methods. Both anti-HIV drugs interacted well with the residues at the active site of SARS-CoV-2 3CLpro. Ritonavir showed a somewhat higher number atomic contacts, a somewhat higher binding efficiency, and a somewhat higher number of key binding residues compared to lopinavir, which correspond with the slightly lower water accessibility at the 3CLpro active site. In addition, only ritonavir could interact with the oxyanion hole residues N142 and G143 via the formation of two hydrogen bonds. The interactions in terms of electrostatics, dispersion, and charge transfer played an important role in the drug binding. The obtained results demonstrated how repurposed anti-HIV drugs could be used to combat COVID-19.


Assuntos
Antivirais/farmacologia , Infecções por Coronavirus/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Lopinavir/química , Lopinavir/farmacologia , Pneumonia Viral/tratamento farmacológico , Ritonavir/química , Ritonavir/farmacologia , Antivirais/uso terapêutico , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/enzimologia , COVID-19 , Domínio Catalítico , Proteases 3C de Coronavírus , Infecções por Coronavirus/enzimologia , Infecções por Coronavirus/virologia , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Reposicionamento de Medicamentos , Inibidores Enzimáticos/uso terapêutico , Humanos , Lopinavir/uso terapêutico , Simulação de Dinâmica Molecular , Pandemias , Pneumonia Viral/enzimologia , Pneumonia Viral/virologia , Ligação Proteica , Estrutura Terciária de Proteína , Ritonavir/uso terapêutico , SARS-CoV-2 , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
20.
Sci Rep ; 9(1): 18996, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31813932

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...